document resume

ED 051256
TH 000151

AUTHOR	Woltf, Hans
TITLE	On Approximation ot Distribution and Density Functions.
InStitution	Educational i'esting Service, Princeton, N.J.
REPORT NO	RB-70-51
PUB DA'. E	Sep 70
NOTE	13 p .
EDRS PRICE	EDRS Price MF-\$0.65 HC-\$3.29
DESCEIPTORS	Algorithms, \#Calculation, * Mathematics, Measurement,
	Multiple Regression Analysis, Probability, *Research
	Methodology, *Statistical ${ }^{\text {analysis, *Statistical }}$
	Studies, Statistics
IDENTIFIERS	*Stochastic Approximation Theory

abstract

Stochastic approximation algorithms for least square error approximation to density and distribution functions are considered. The win results are necessar; and sufficient parameter conditions fur the convergence of the approximation processes and a generalization to sore time-dependent density and distribution functions. (Author)

ON APPROXIMATION OF DISTRIBUTION AND DENS ITY FUNCTIOIIS

Hans Wolff

US D:PARTMENTOFMEALTH.EDUCATION
OFFICE OFARE
1 HIS OOCUMENT HAS EEEN AEPROOUCED
EMACTLY S REEEIVEDFRCM THFTERSON OR
ofganiza tion obiginating it minis of
VIEW OR OPINIONS STAIED DC NG NECE
SARILY REPRESENT OFFICIAL OFFICE OFESU
GATION POSITIONOR POLIGY

> This Bulletin is a draft for interoffice circulation. Corrections and suggestions for revision are solfcited. The Bulletin should not be cited as a reference without the specific permission of the author. It is automatically superseded upon formal publicatior. of the material.

Educational Testing Service
Princeton, New Jersey
September 1970

On Approximaticn of Distribution and Density Functions

Hans Wolff

Abstract

Stochastic approximation algorithms for least square error approxime.tion to density and distribution functions are considered. The main results are necessary and suficicient parameter conditions for the convergence of the approximation processes and a generalization to some time-dependent density and distribution functions.

2

Hans Wolff

In this paper we deal with the special approach to the estimation of an unknown density or jistribution function of a real-valued random variable ξ as developed in [1]-[8]. Using the same notation we briefly describe this approach.

Consider the N-dimensional vector of functions $\Phi(x)=\left(\phi_{1}(x), \ldots, \phi_{N}(x)\right)^{T}$. The components $\vartheta_{i}(x), i=1, \ldots N$, are assumed to be linearly indepentent, square-integrable and bounded real functions on an interval $\Omega=[a, b]$ of the real axis. If a sequence of independent observations $\left\{x_{1}, x_{2}, \ldots\right\}$ from ξ is available, the roblem is then to find an approximation

$$
\hat{F}(x)=\sum_{i=1}^{N} \alpha_{i}{ }_{i}(x)=\underline{\alpha}^{T} \Phi(x)
$$

in Ω for the u nnown distribution function $F(x)$, such that $\hat{F}(x)$ minimizes the integraj-square-eiror criterion

$$
\begin{equation*}
\mathrm{r}_{1}(\underline{\alpha})=\int_{\Omega}\left[F(x)-\underline{\alpha}^{\mathrm{T}} \Phi(x)\right]^{2} d x \tag{1}
\end{equation*}
$$

with respect to the vector of coefficients $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)^{T}$. The analogous estimation problem for the unknown density function $f(x)$ consists in determining the estimator $\hat{f}(x)$,

$$
\hat{f}(x)=\sum_{i=1}^{N} \beta_{i} \Phi_{i}(x)=\beta^{T} \Phi(x),
$$

such that again the integral-square-error criterion

$$
\begin{equation*}
G_{2}(\beta)=\int_{\Omega}^{1}\left[f(x)-\beta^{T} \Phi(x)\right]^{2} d x \tag{2}
\end{equation*}
$$

is a minimum with respect to B.

3

$$
-2
$$

As can be easily shown (see e.g., [1]), minjmizing (1) and (2) is equivalent to solving the regression equations

$$
\begin{equation*}
E\left[\int_{\Omega} z(\xi, y) \Phi(y) d y-\underline{A \alpha}\right]=0 \tag{3}
\end{equation*}
$$

and
(4)

$$
E[\underline{w}(\xi)-\underline{A \beta}]=0,
$$

respectively, where \underline{A} is a known $N \times N$-matrix,

$$
\underline{A}=\int_{\square} \Phi(y) \Phi^{T}(y) d y,
$$

and $z(\xi, y)$ and $\underline{w}(\xi)$ are defined as

$$
\begin{aligned}
& z(\xi, y)=\left\{\begin{array}{lll}
1 & \text { if } & \xi \leq y \\
0 & \xi>y \\
\xi>y
\end{array},\right. \\
& \underline{w}(\xi)=\left\{\begin{array}{lll}
\Phi(\xi) & \text { if } \begin{array}{l}
\xi \in \Omega \\
0
\end{array} & \xi \Omega
\end{array} .\right.
\end{aligned}
$$

The purpose of the mentioned papers consisted in solving the parameterdependent regression equations (3) and (4) by the application of the stochastic approximation theory as an appropriate method. A further goal was to give an iterative solution in order to avcid computer storage problems. But because of the linear independence of the $\phi_{i}(x), i=1, \ldots, N, A^{-1}$ exists and we can solve (3) and (4) directly:

$$
\begin{equation*}
\underline{\alpha}^{*}=\underline{A}^{-1} E\left[\int_{n} z(\xi, y) \Phi(y) d y\right] \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\underline{B}^{*}=\underline{A}^{-L} E[\underline{w}(\xi)] . \tag{6}
\end{equation*}
$$

Therefore we have only to estimate the expectations of the parameter-independent
random variables $\zeta_{1}=\int_{\Omega} z(\xi, y) \Phi(y)$ dy and $\underline{S}_{2}=w(\xi)$. So simprifying the statenent of the problem we can expect stronger limiting theorems for those procedures considered in [1]-[8]. In previous papers ([9], [10]) the author has dealt with such iterative approximations of the (xpectation of a random variable. The following process was considered.

Let $\left\{a_{n}\right\}$ be any sequence of real numbers restricted to $0<a_{n}<1$ for all n and let $\ddot{y}_{n}=\left(y_{1}, \ldots, y_{N}\right)^{T}$ denote the n-th observation of a real-valued N-dimensional random variable $I=\left(\eta_{1}, \ldots, \eta_{N}\right)^{T}$. Then the approximation procedure $\left\{\underline{X}_{n}\right\}$ is defined by the iteration formula

$$
\begin{equation*}
\underline{X}_{n+1}=\left(1-a_{n+1}\right) \underline{X}_{n}+a_{n+1} \underline{Y}_{n+1}, n=0,1,2, \ldots, \tag{7}
\end{equation*}
$$

with an arbitrary but fixed starting point $X_{0}=\underline{a} \in R^{N}$. Theorem 1 gives necessary and sufficient parameter conditions for the convergence of this Frocess.

Theorem 1: The process (7) converges under the assumption

$$
0<\max _{1 \leq i \leq N} \operatorname{Var} \eta_{j}<\infty
$$

with probability one and in the mean to the expectation M of I,

$$
\underline{X}_{\underline{n}} \rightarrow \underline{M} w \cdot p \cdot 1 \quad, \quad E\left(\underline{X}_{n}-\underline{M}\right)^{2} \rightarrow 0 \quad(n \rightarrow \infty)
$$

if and only if
(8)

$$
a_{n} \rightarrow 0, \sum_{i=1}^{n} a_{i} \rightarrow \infty \quad(n \rightarrow \infty)
$$

The parameter condition (8) is only sufficient if we admit the degenerated and trivial case $\operatorname{Var} T_{i}=0, i=1, \ldots, N$. The proof of Theorem 1 is given in [10].

The application of Theorem 1 to the random veriables $A^{-1} S_{1}$ and $A^{-1} \zeta_{2}$ yields at once those estimation procedures $\left[\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ for the sought vectors α^{*} and B^{*} considered in [1]-[8]:
(9) $\quad \alpha_{-1+1}=\left(1-a_{n+1}\right) \underline{\alpha}_{n}+a_{n+1} \underline{A}_{-1, n+1} \underline{1}_{1, n}, \underline{\alpha}_{0}=\underline{b} \in R^{N}$ w.p.1 , (10) $\quad B_{n+1}=\left(1-a_{n+1}\right) B_{n}+a_{n+1} \underline{A}^{-1} \underline{z}_{2, n+1}, B_{0}=\underline{c} \in R^{N}$ w.p.1, wheie $\underline{z}_{1, n}$ and $\underline{z}_{2, n}$ denote the n-th observation of the random variabies ζ_{1} and ζ_{2}, respectively:

$$
\begin{aligned}
& \underline{z}_{1, n}=\int_{\Omega} z\left(x_{n}, y\right) \Phi(y) d y=\left\{\begin{array}{ll}
\int_{\Omega}^{b} \Phi(y) d y & x_{n}<a \\
\int_{0}^{b} \Phi(y) d y & \text { if } \\
x_{n} \quad 0 & a \leq x_{n} \leq b
\end{array},\right. \\
& a_{2, n}=\left\{\begin{array}{cc}
\Phi\left(x_{n}\right) & \\
x_{n} \in \Omega \\
0 & \text { if } \\
0 & x_{n} \& \Omega
\end{array}\right.
\end{aligned}
$$

From Theorem 1 follows immediately,
Theorem 2: The stochastic process defined by (9) and (10) converges with probability one and in the mean to $\underline{\alpha}^{*}$ and β^{*}, respectively, if and only if the sequence of parameters $\left(a_{n}\right)$ fulfills condition (8).

We mention that the following modirications of (9) and (10) suggested, for example in [1], [6], [7],

$$
\begin{aligned}
& \alpha_{n+1}=\left(1-a_{n+1}\right) \underline{a}_{n}+a_{n+1} A^{-1} \cdot \frac{1}{n+1} \sum_{i=1}^{n+1} \underline{z}_{1, i}, \\
& \underline{B}_{n+1}=\left(1-a_{n+1}\right) \underline{B}_{n}+a_{n+1} A^{-1} \cdot \frac{1}{n+1} \sum_{i=1}^{n+1} \underline{z}_{2, i},
\end{aligned}
$$

do not have a faster rate of convergerce than (9) and (10) themselves as was erroneously asserted in [6] and [7]. Tre error consisted essentially in taking α_{n} and $\frac{1}{n+1} \sum_{i=1}^{n} \underline{Z}_{1, i}$ (or $\underline{\beta}_{n}$ and $\frac{1}{n+1} \sum_{i=1}^{n+1} \underline{z}_{2}, i$, respectively) as indepen.ent, random variables (e.g. [6], p. 133, equation (7)).

Tine-dependent Density and Distribution Functions

Instead of identically distributed values $x_{i}, 1=1,2, \ldots$ from: we deal now with a sample $\left\{x_{1}, x_{2}, \ldots\right\}$ corresponding to a sequence of random variables $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ where ξ_{i} is distributed with $F_{i}(x), i=1,2, \ldots$, representing, e.g. successive time periods. Since we want to derive an anaiogous limiting theorem to that given in Theorem 2 we restrict ourselves to the case where $\left\{F_{i}(x)\right\}$ converges to a limiting distribution $F(x)$ and $\left\{f_{i}(x)\right\}$ converges to a limiting density function $f(x)$. For thiv situation we have the following corollary to Theorem 2.

Corollary: Theorem 2 holds even in the case where the observations x_{i}, i. $=1,2, \ldots$, are drawn from a population with a distribution function $F_{i}(x)$ and a density function $f_{i}(x)$, if we assume

$$
\begin{aligned}
& F_{i}(x) \rightarrow F(x), f_{i}(x) \rightarrow f(x) \quad(i \rightarrow \infty) \\
& {[F(x) \text { distribution function, } f(x) \text { density function] }}
\end{aligned}
$$

This corollary follows immediately from (5) and (6) and from a generalized version of Theorem 1 given below.

Let $\left\{y_{i}=\left(y_{i, l}, y_{i, 2}, \ldots, y_{i, N}\right)^{T}\right\}$ be a sequence of independent N -dimensional real-valued observations distributed with $\left(F_{i}\left(y_{1}, \ldots, y_{N}\right)\right\}$, respectively, and where $F_{i}\left(y_{1}, \ldots, y_{N}\right)$ converges to a nondegenerated limiting distribution $F\left(y_{1}, \ldots, y_{N}\right)$. Th n we have
Theorem 3: The process (7)

$$
\underline{x}_{n+1}=\left(1-a_{n+1}\right) \underline{x}_{n}+a_{n+1} \underline{y}_{n+1} \quad, \underline{x}_{0}=\underline{a} \in R^{N}
$$

converges under the asisumption

$$
\max _{1 \leq j \leq i} \operatorname{Var} y_{i, j} \leq c<\infty \quad, \quad i=1,2, \ldots
$$

with probability one and in the mean to the expectation M of $F\left(y_{1}, \ldots, y_{N}\right)$,

$$
\underline{X}_{n} \rightarrow \underline{M} \text { w.p.l }, \quad E\left(\underline{X}_{n}-\underline{M}^{2} \rightarrow 0 \quad(n \rightarrow \infty)\right.
$$

if and only if $\left[\mathrm{g}_{\mathrm{n}}\right.$ \} fulfills condition (8).
Because of the length of the proof of this theorem, the reader is referred to [9] or [10]. Some problems arise if we corsider the case where Ω is the whole probability space, especially the entire real axis. In this case it is natural to require that the approximation $\hat{\Gamma}(x)$ should satisfy the normalization condition

[^0]$$
\int_{\Omega}^{\hat{I}}(x) d x=1
$$

Unfortunately this is not true in general. To avoid this we can use lagrange's coefficients method as was done for orthonormal functions $\phi_{i}(x)$ by Laski [5] and for a similar problem by Nikolic and Fu [6].

Instead of (2) we now minimize the criterion

$$
G_{3}=\int_{\Omega}\left[f(x)-\sum_{i==}^{N} \beta_{i} \Phi_{i}(x)\right]^{2} d x-2 \lambda\left(\sum_{i=1}^{N} \beta_{i} r_{i}-1\right)
$$

where λ is a Lagrange coefficient and

$$
d_{i}=\int_{\Omega} \Phi_{i}(x) d x, \quad 0<\left|d_{i}\right|<\infty, \quad i=1,2, \ldots, N
$$

The ninimization conditions

$$
\frac{\partial G_{3}}{\partial \beta_{i}}=0, \quad i=1, \ldots, N ; \quad \frac{\partial G_{3}}{\partial \Lambda}=0
$$

yield the system of linear equations

$$
\begin{gathered}
\sum_{i=1}^{N} d_{i} \beta_{i}=1 \\
\sum_{i=1}^{N} a_{i k} \beta_{i}+d_{k} \lambda=E\left(\phi_{k}\right), k=1, \ldots, N,
\end{gathered}
$$

where $A=\left(a_{i k}\right)$ means the same $N \times N$-matrix as given in (4). From this we obtain the solution

$$
\begin{equation*}
B_{j}^{* *}=\frac{1}{|\underline{A}|} \sum_{i=1}^{N} A_{i j}\left[E \phi_{i}(x)+d_{i}-\frac{|A|-\sum_{k=1}^{N} E \phi_{k}(x) \sum_{\ell=1}^{N} d_{\ell} A_{\ell}}{\sum_{k=1}^{N} d_{k} \sum_{\ell=1}^{N} d_{\ell} A_{k \ell}}\right], \tag{11}
\end{equation*}
$$

where $A_{i j}$ is the adjunct of $a_{i j}$.
With the abbreviations

$$
\begin{aligned}
D_{i j} & =\frac{\sum_{\ell=1}^{N} d_{\ell} A_{i \ell} \sum_{k=1}^{N} d_{k} A_{k j}}{\sum_{k=1}^{N} d_{k} \sum_{\ell=1}^{N} d_{\ell} A_{k \ell}}, \quad D_{j}=\frac{\sum_{i=1}^{N} d_{i} A_{i j}}{\sum_{k=1}^{N} d_{k} \sum_{\ell=1}^{N} d_{\ell} A_{k \ell}}, \\
c_{i j} & =\frac{1}{|\underline{A}|}\left(A_{i j}-D_{i j}\right)
\end{aligned},
$$

we can rewrite (11):

$$
\beta_{j}^{* *}=D_{j}+\sum_{i=1}^{N} c_{i j} E_{i}(x)
$$

From Theorem l it follows at once that the stochastic processes defined by

$$
\begin{align*}
& Y_{n+1}=\left(1-a_{n+1}\right) Y_{n}+a_{n+1}\left[D_{j}+\sum_{i=1}^{N} c_{i j} \phi_{i}\left(x_{n}\right)\right] \tag{12}\\
& Y_{O}=b_{j} \in R^{\prime} \quad, \quad j=1, \ldots, N
\end{align*}
$$

converge to $\beta_{j}^{* *}, j=1, \ldots, N$, with probability one and in the mean if and only if the parameter condition (8) is fulfilled. To avoid unnecessary computations we estimate the purameters $B_{j}=\beta_{j}^{* *}-D_{j}$. The final form of the
sequential estimation of the unknown vector of parameters $\underline{B}^{T}=\left(\beta_{1}^{* *}-D_{1}, \ldots, \beta_{N}^{* *}-D_{N}\right)^{T}$ is then

$$
\begin{equation*}
\underline{Y}_{n+1}=\left(1-a_{n+1}\right) Y_{n}+a_{n} \underline{c} \Phi\left(x_{n}\right) \quad, \quad Y_{0}=\underline{b} \in R^{N} \tag{13}
\end{equation*}
$$

where C is the $N \times N$-matrix $\quad \mathrm{C}=\left(c_{i j}\right)$.
Theorem 4: The process (13) converges to the vector B^{T} with probability one and in the quadratic mean iff the parameter sequence $\left\{a_{n}\right\}$ satisfies condition (8).

We give a simple application. Co.sider a mixture

$$
p(x)=\sum_{i=1}^{N} \beta_{i}{ }_{i}(x) \quad, \quad \sum_{i=1}^{N} \beta_{i}=1
$$

of density functions $\Phi_{j}(x), i=1, \ldots, N$. The set of functions $\phi_{i}(x)$ is assumed to be known and to be linearly independent on Ω. Furthermore a sequence of irdependent observations $\left\{x_{1}, \ldots, x_{n}\right\}$--identically distribur with $p(x)$-may be available from which we want to estimate the parameters $\beta_{i}, i=1, \ldots, N$. This decomposition of a mixture can be done by our sequential estimation procedure (12) or (13). Because d_{i} equals 1 , $i=1, \ldots, N$, we get simpler formulas for the $D_{i j}$ and D_{j} :

$$
D_{i j}=\frac{\sum_{\ell=1}^{N} A_{i \ell} \sum_{k=1}^{N} A_{k \ell}}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} A_{k \ell}}, \quad D_{j}=\frac{\sum_{i=1}^{N} A_{i j}}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} A_{k \ell}}, \quad i, j=1, \ldots, N \quad .
$$

The stochastic processes (22) and (13) converge to the unknomin parameters β_{j}, $j=l, \ldots, N$, and $B_{j}=\beta_{j}-D_{j}$, respectively.

11

References

[1] C. C. Blaydon, "Approximation of aistribution and density functions," Froe. IEEE (Letters), Vol. 55, pp. 231-23?, February 1967.
[2] K. S. Fu, Sequential Methods in Fattern Recognition and Machine Learning. New York: Academic Press, 1968.
[3] R. L. Kastyan and C. C. Blaydon, "Fecovery of functions from noisy measurements taken at randomly selected points ard its application to pattern classificaticn," Proc. IEEE (Letters), Vol. 54, pp. 1127-1129, August 1966.
!4] R. L. Kashyap and P. C. Blaydon, "Estimation of probability density and distribution functions," IEEE Trans. Information rheory, Vol. $1 T-14$, pp. 51?-556, July 1968.
[5] J. Laski, "On the probability density estimation," Proc. ItEE (Letters), Vol. 56, pp. 866-867, May 1968.
[6] Z. J. Nikolic and K. S. Fu, "On the estimation and decomposition of mixtdie. using stochastic approximation," IFEE - Southwestern Conference Recoria, pp. 131-138, 1967.
[7] Z. J. Nikolic and k. S. Fu, "A matiomatical model of learning in an unknown random environment," Froc. 1966 : t' 1 Electronics Conf. (Clicabo, Ill.), Vo1. 22, pp. 607-612.
[8] Y. Z. Tsypkin, "Use of the stochastic approximation method in estinatine wnknown distribution densities fror observations," futomation and Remote Control, Vol. 27, pp. 432-434, 1966.
[9] H. Wolt'f, "Zur Konvergenz von Lernprozessen," "npiblished dortoral dissertation, Technical Uni"ersity of Braunschweiz, Gerrany, 1969.
[10] H. Wolff, "Limiting theorems for some generalized Bush-Mosteller Models," Research Bulletin RE-70-23, Educational Testing Service, Princeton, New Jersey. (Also submitted to the Journal of Mathematical Psychology.)
[ll] H. Scheffé, "A useful convergence theorem for probability distributions," Ann. Math. Stat., Vol. 18, pp. $434-438,1 y 47$.

[^0]: Line assumption $f_{i}(x) \rightarrow f(x)$, where $f(x)$ is a density function, is sufficient for $F_{i}(x) \rightarrow F(x)$, and $F(x)$ distribution function (see e.g., [11]).

